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Dual integral equations with kernels containing spherical Legendre functions are exam- 
ined. It is shown that these equations permit exact solution in quadratures. The proposed 

theory includes as a special case the theory of equations examined earlier which are con- 

nected with the Mehler-Fock rransform and which are encountered in various applica- 

tions, in particular in the solution of mixed boundary value problems in mathematical 
physics and in the theory of elasricity. 

1. Equations of the following form are called dual equations COMeCted with the inte- 
gral transform of Mehler-Fock: 

00 

s M (r) P_I,,+,~ (ch a) dr = I (a) (6 B a < 4 
0 

a3 

(1.1) 

here P, (2) is a spherical Legendre function with a complex index v = - ‘1s f f~, 

f(a) and g(a) are given functions, o&r) is the weight function (O(T) > 0, O(T) z T 
for 7 + m):-Equations of this type are encountered in many applications; in particular, 
they play an important role in the solution of some mixed boundary value problems. 

Generalizations of Eqs. (1.1) are also examined. The kernels of these equations contain 
assocfated spherical functions. 

At the present time a general theory of such equations does not exist, and a large part 
of results obtained in this area is related to equations of a special form which correspond 

to different selection of function o(r) (see [l-6]). Thus, the following equations were 
studied 03 

s 1M (z) P_l/e+i, (ch a) d% = f (a) (0 d = < a01 (1.2) 
0 



1030 N. N. Lebedev and I. P. Skal’skaia 

They arise in the solution of boundary value problems with 
given on the surface of a one-sheet hyperboloid of revolution 

particular case is represented by the equations given in p] 

mixed boundary conditions 
@I. Another interesting 

\ M (r) P-l/tdiT (Ch U) dT =I f (a) (0 d a < a01 (1.3) 
0 

cc 

s M (r) r th 11rP_~,,+~~ (ch u) dr = 0 (a > a01 
0 

The solution of these equations was the first step in the formulation of the theory of dual 

integral equations with kernels of Mehler-Fock. These equations find numerous appllca- 

tions in the solution of some contact problems, problems in the theory of elasticity, elec- 
trostatics, etc. 

Equations (1.2) and (1.3) allow exact solutions in quadratures. The method ‘of solution 

of these equations can be used at the same time to study equations of a more general 
type in which the function O(T) coincides only asymptotically with the weight functions 
of equations which are under examination. For these cases the investigation of dual equa- 

tions leads to the solution of Fredholm’s integral equations of the second kind with a 
continuous kernel. 

The purpose of this paper consists in the solution of dual integral equations 

03 

s 
,V (z) P-t/,+i+ (ch U) dr = f (~1 (0 d a < TJ 

0 (1.4) 
co 

c M(r) Ok(Z) P_ Ii,+{+ (ch a> dt = 0 (a > a01 
b 

q,(r) = 4nP[chnrl‘(+ +++$)r(+++_+) x 

(1.5) 

Here r(z) is the gamma function, p is a parameter which assumes arbitrary real values 
(since 6.LP (7) = O,,(Z), we can without limiting generality assume that lo > 0). 

Equations (1.2) correspond to the value lo = 0, equations (1.3) - to the value l.~ = l/s. 
It is shown that Eqs. (1.4) belong to a class of equations which can be solved exactly. 

The proposed method of solution can be used to examine both particular cases investi- 

gated earlier from a single point of view. The developed theory makes it also possible 

to find solutions of equations with the weight function w(z), which is close to oIL (7). 

2. Let us examine some discontinuous integrals containing spherical Legendre func- 
tions. Before going to the solution of dual integral equations of the type to be examined, 
we obtain two auxiliary equations which play an important role in the theory which fol- 
lows. These equations have the form 

,.J 

cl1 t - s T th nr 

WI” (T) 
” 

1 
+ $ - $- , 1~ , - sh2 t P+ ir (ch z) cir :.= 
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(‘>a) 

0 (’ < 1) 
= 

(ch I)‘-’ 1 ch’t -ch*a 

> 

(2.2) 

)/ch’f - chl a ch* : (‘>M 

here F (n. b, c. 2) is a hypergeometric function. The first of these equations is valid 

for 0 < p < ‘Is, the second for any .p > 0. 

Equations (A. 1) and (‘L. 2) apparently will be new, and their derivation is based on 
relatively complicated considerations. A brief development will be presented which 
alows to obtain Eq. (2.1). Taking advantage of well known transformation for hypergeo- 

metric function 
I/%l- (b - o) 1 

F (a, b, l/z, :) = (1 - 2)-O I’ (1,1 _ a) r (b) F 0, ; -b, 1 + = - b, - 1-z 
+ 

and taking v = ir, we can represent the integral in the left side of (2.1) in the form 

, = (ch I)“%-” ‘O” 

4i VJI c . ---Ico 
1 

i< (Ch f)_‘F 3 f f , 1 + V, &tj P,_,,, (ch 4 dV (2.3) 

Initially it is assumed that i > a. The integrand in (2.3) represents a meromorphic 

function with poles in points v = -2n - 1 /P f p (n = 0. 1,2,...). For the condition 
0 < p < I;? these poles are located to the left of the imaginary axis (for P = ‘1~ the 

point v = 0 is a removable singular point). Therefore, complementing the contour of 

integration wit\ an arc of the circle of the large radius located in the half-plane 
llev > 0,and noting on the basis of well known asymptotic equations, for Iv1 -. W, 
I argv[ < ‘13 x the integrand tends to zero as 2’” (nvsha) -“.e-(’ .‘)“, we obtain 

J 1 f>X I: 0 

For the evaluation of the integral at t <a the following functional relationship is 
utilized .7 tg nvPv_,, (:I = Q.,_,,, (-) - Q,_q,, (:) 
and / is represented as the sum of two integrals ( l ) 

(2.4) 

l ) In the first integral the substitution of v by -v has been performed. 
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(cont.) 

x(chr)‘P a++-& +-$-+, ( I-v& Q,_,,, (ch 4 dv - 

ice 

s 

v ctg nv 
- 

_~ r (1 + VI 

x(cht)-‘P ( $++++. f-++;. I +v, & -) Q,+ (ch a) dv} 
With the assumption that 0 Q p Q l/s singular points in the first integral located in 

the half-plane Rev > 0 will be poles v = n (n = 1,2,...) and v = 2n i- l/z f p (n = 

=O. 3,2.... ). in the second integral, poles v = n (n =I i, 2,...). Supplementing the 
contour of integration to a closed contour and taidng into account the asymptotic beha- 

vior of integrands for 1 v 1 -, OC, Iargvl 6 r/s n, we obtain using the residue theory (‘) 

, = (ch p c0 
vn P (__I)” (2n-P+1/21r(P---n)tg*p x 

n-0 nl rk-~++++%) 

x (ch c)~-PF (- n, p-n, - 2n i- p + Yz, sch* t) Q%_,, (ch a) - 
co 

x (ch t) zn+PF(-n, -/A--_, - 2n - P + r/s, sch’ t) Qs,,+& (ch 2)) (2.5) 

The summation in the right side of Eq. (2.5) can be carried out on the basis of gene- 

ral theory for series of this type which is due to Schafke [7). On the basis of this theory 
we find 

‘I ka= 
(chO’-P ( p p 1 ch’t-chz z 

)/&la_ehtr ?,-Y’T* TV ch’ t i 

The proposed method of evaluation of integral (2.1) is also applicable for p > ‘1s ; 
however,in this case the distribution of singular points in the plane of the complex vari- 

able turns out to be somewhat different. This leads to the appearance of additional 

terms in the right side of Eq. (2.1). The number of these terms depends on the value of 

parameter p. Without writing the explicit expressions for these terms, we note that they 
will be continuous functions of the variable r in the interval (0, o(). 

Equation (2.2) is proven in an analogous manner. Here for this work it is sufficient to 
estabKsh the validity of the equation for t <a. 

3. Let us catruct the solution of dual integral equations for values 0 < p < r/s 
Let us examine dual integral equations 

(x, 

s it! (r).P_a/,Li, (Ch U) dr = / (a) (0 < 3 < a01 (3.1) 
0 

1 :Jl (T) up(~) F-l/,+ir (ch a) dr = 0 (2 > a,) (3.2) 

here C+(T) has the significance indicated in Eq. (1.5). f(a) is a given continuously dif- 
ferentiable function. 

l ) Residues related to points v = n (n = i,2,...) are cancelled in the computation. 
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In the solution of Eqs. (3.1) and (3.2) we shall assume initially that the parameter p 

belongs to the interval (0, ‘/a). We shall seek the solution of equations under examina- 
tion in the form (3.3) 

Qo 

M (z) = % S’P(t)chtF(~+$+~,t+~--,~, ) - sh2t dt 
p 0 

here (p(t) is an unknown function which is continuous together with its tit derivative 
in the interval (0, a,). 

Taking into consideration the relationship 

F(a, b, l/s 9 - z”) = -&zF(a,b, s/t, -zs) 

and integrating (3.3) by parts, we have 

_il/l (t) = 2s 
IL 

{cp (a,)sh aoF (t + % + q, * _L++_g,+,_ 

- sh2a, )-i"p'(L)shfFjt;-f+~,~+e-~,~, -sh? dt 
0 

, ) } 

If the last expression is substituted into (3.2) and if advantage is taken of the value of 
integral (2.2), the Eq. (3.2) will be satisfied as an identity. 

Substituting (3.3) into (3.1) and taking into account Eq. (2. l), we arrive at the inte- 
gral equation of the first kind for the function cp (t) 

a 

s 1-Y 
cp (t) tcht) ch’t - ch’ a 

I/chSa - chZC ch”C 
dt = -$f (z) (3.4) 

0 

Equation (3.4) takes a simpler form if we set 

x=ch2a, y=chst, \I,&)= FFsT (ar ch fi), g (t) = f f (ar chl/Z) 

After a change of variables we obtain 
(3.5) 

x 

s cp (Y) 
1 vnvx-_ F (+$,+I-f)dy=g(z) (z > i) (3.6) 

The last equation belongs to a class of integral equations recently investigated by 

Love 183. This class includes many equations of practical importance, in particular Abel’s 
integral equation which plays an important role in the solution of dual integral equations 

(1.2) and (1.3). 
According to Love’s theory the solution of Eq. (3.6) has the form 

l+(y) = y'h $ y-,.,s R (4 
1 vn v-Y-- 

F(+,i -+, f, 1 -+jdx (3.7) 

Returning to the initial variables, we find 

<p(t) = (cht)2p-1 + (cht)-r 5 ;;;;“ldJ, 
(3.8) 

After determination of q(t) the solution of dual integral equations (3.1) and (3.2) is 
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obtained in quadratures using Eq. (3.3). In this manner Eq. (3.8) gives the solution of 
the formulated problem. 

This theory contains as particular cases results obtained earlier with respect to dual 

integral equations (1.2) and (1.3). 
Computations in Sect. 3 have a formal character. However, with limitations placed 

on function f (a) above, Eq. (3.4) allows a solution in the class of continuously differen- 

tiable functions. This solution is determined from Eq. (3.8). Based on this we can show 

that Eq. (3.3) gives a continuous solution of dual equations (3.1) and (3.2). 

As an example let us examine the case f (a) = 1. For a right side of this kind the 

desired function ‘p (t) can be expressed in a closed form through a hypergeometric func- 

tion. Utilizing Eq. (3.8). after some subsequent computations we obtain 

4. The method proposed above for the solution of dual equations (3.1) and (3.2) in 
principle can be generalized to the case 0 < p < WJ however, the entire theory assumes 
in this case a somewhat cumbersome form. For this reason we limit ourselves to a brief 
review of this theory without presenting the explicit form of the solution and without 

details of computations. 
As before, the solution of dual equations is sought in the form (3.3). In this case on 

the basis of (2.2) the homogeneous equation (3.2) is satisfied as an identity. Substitu- 

tion of (3.3) into the inhomogeneous equation (3.1) leads (with consideration of the 
correspondingly modified form of integral (2.1) ) to an integral equation for the function 

q(t) which differs from Eq. (3.4) because its right side contains in addition to the given 

function f(a) a supplementary term of the form 
iv 

Coefficients cn represent integrals of products of the desired function cp(t) with some 

known functions of the variable r over the interval (0, ao). The number N is connected 

with the parameter p by the relationship JJ .: [ 1/2 p--1/4] . The number of terms in 

this sum is therefore always finite ( l ). After solution of the integral equatiomusing the 

inversion formula (3.8),the determination of unknown constants c, is reduced to the 
solution of a system of linear algebraic equations. 

As an example which illustrates the peculiarities of the theory arising at f.r > l/z. 
let us examine the solution of the following dual integral equations 

1 XI (r) P++iT (ch z) dr -7 f (cc) (O<:a<a”) (4.1 ) 

CI 

s :\I (t) o, (t) P-, ?: :_ (ch a) dt z 0 (a _> x,) (4.2 
I, 

which correspond to a value of i.r = 1 and which occur in practical applications. In 

*) In particular, for the interval 0 < p < Ii2 the sum turns out to be empty, and the 
additional term is absent (for p = Ii2 the coefficient PO =- 0). 
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this case the discontinuous integral (2.1) has the form 
30 

ch t 
s 

~~($+~,a-~,3,-~h’t)P_v,+i~(cha)ds= 
_” W(T) 

1 

0 (t) - sch t (t < a) 
e(t) = 

ch a 
= 

- sch t (t > a) ’ cht )/ch’~-cCh*t 
(4.3) 

We note that the first term e(t)lin the right side of (4.3) can be obtained from (2.1) 

if ~1 = 1’ is taken there. The second term corresponds to the additional residue in the 
stripv=l/z. This residue arises in the evaluation of integrals (2.3) and (2.4). 

If. according to (3.3). the solution of Eqs. (4.1) and (4.2) is sought in the form 

M (r) = s %‘,(t,eht~(~+;.~-~,~,-sYtj~t (4.4) 

then Eq. (4.2) is satisfied as an identity, while for the determination of Cp(t) the follow- 

ing integral equation is obtained 
Z 

cha c 
cp (1) dt 

6 ch t )/cha a - chat 
:= + f(a) $ c (4.5) 

The kernel of this equation coincides with the kernel of Eq. (3.4) for p = 1 . The 
unknown additive constant c is related to the desired function through the relationship 

a4 

c= s g dt 
0 

Solving Eq. (4.5) according to the scheme indicated above, we find 

q,(t) = ch t?!e\ j(r)shadr + $ 
6 )/ch2t - chZa 

(4.6) 

(4.7) 

Multiplying the last equation by (ch t)-’ and integrating over the interval@, a,), we 
obtain for the determination of c a linear equation, from which follows 

a0 
1 

CC 
f (a) sh adz 

1 - 2x-l arctg sh z,, ch’ a0 - ch’a 
(4.8) 

The mathematical method developed in this paper can also be used for the lnvestiga- 
tion of dual equations of Mehler-Fock when O(T) is close to O, (T). Application of the 
usual procedure presents the possibility to obtain the solution of these equations in the 

form of quadratures containing the supplementary function q(t) which satisfies an inte- 
gral equation of the second kind with a continuous kernel. For the particular cases 

CL = 0 and p = l/s the corresponding calculations were carried out in p, 2 and 61. 
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The second law of thermodynamics is used: (a) to derive the flow equations for a mag- 

netoplastic medium; (b) to investigate in detail the magnetoplastic flow of a long thick- 

walled pipe; (c) to consider the flow of a pipe acted on by a nonpenetrating field; (d) 
to find the conditions under which the “infrozen” magnetic field facilitates plastic flow. 

Magnetic fields capable of producing stresses in excess of the yield stress of metals 

have been achieved p]. If the conductivity of the metal is sufficiently high. then the 
presence of infrozen magnetic lines of force p] results in interaction between the plastic 

flow and the magnetic .field. This is what constitutes magnetoplastic flow. Magneto- 

plastic effects are manifested if the magnetic pressure is of the order of the yield stress 
of the material, i.e. if l/sI!P/x zz k. In the case of hard coppers (k zz 40 kg/mm’) the 

field intensity required is Hz300 kOe ; for hard steels (k z 100 kg/mm2 ) H ~~4450 kOe. 

1. Let us make use of the second law of thermodynamics. The law of conservation 
of the energy J+’ in some volume v can be written as 133 

dW = 6A + d,W (1.1) 

Here A is the work done by the external forces ; de W is the energy influx through 
the surface. 

The work done per unit time can be resolved [4] into the work done by the external 

surface forces cYJ / dt 

and that done by the external body forces (the Lorentz forces d,A / (31 ), 

(1.2) 

(1.3) 


